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1. Introduction
In 1878, the notion of Cayley graph was introduced by Cayley [2] to illustrate

the concept of ‘group’ and ‘generating’ subsets. The formal definition is as follows:
“The Cayley graph of Γ, denote by, Cay(Γ, S) is a simple graph whose vertices are
the elements of Γ, and two vertices x and y are adjacent if and only if there exists
s ∈ S such that x = sy”. For detailed study on the Cayley graphs the reader is
referred to [9, 11].
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“A graph Γ equipped with a signature σ is called a signed graph, denoted by
Σ := (Γ, σ), where Γ = (V,E) is an underlying graph and σ : E → {+,−} is
the signature that labels each edge of Γ either by ‘+’ or ‘−’. The edge which
receives the ‘+’(−) sign is called positive(negative) edge. A signed graph is an all-
positive(all-negative) if all of its edges are positive(negative); further, it is said to
be homogeneous if it is either an all-positive or an all-negative and heterogeneous
otherwise. The negative degree d−(v) of a vertex v is the number of negative edges
incident at v in Σ and the positive degree d+(v) is defined similarly.”

One of the fundamental concept in the theory of signed graph is that of balance.
Harary [5] introduced the fascinated concept of balanced signed graphs for the
analysis of social networks, in which a positive edge stands for a positive relation
and a negative edge is for negative relation. A signed graph is balanced if every
cycle has an even numbers of negative edges. A cycle in a signed graph Σ is said
to be positive if it contains an even number of negative edges. For more details
on the concept of balance and consistency we referee to [3, 6]. The following is
well-known criteria for balance.

Lemma 1.1. [13] A signed graph in which every chordless cycle is positive is
balanced.

A marked signed graph is a signed graph each vertex of which is designated to
be positive or negative and it is consistent if every cycle in signed graph possesses
an even number of negative vertices. Consistent marked graphs were introduced
by Beineke and Harary [1], and was motivated by communication networks. A
marked signed graph is an ordered pair Σµ = (Σ, µ), where Σ = (Γ, σ) is a signed
graph and µ : V (Σ) → {+,−} is a function from the vertex set V (Σ) into the set
{+,−}, called marking of Σ. In particular, σ induces a unique marking µσ defined
by

µσ(v) =
∏
e∈Ev

σ(e),

where Ev is the set of edges incident at v in Σ, is called a canonical marking of
Σ. If every vertex of a given signed graph Σ is canonically marked, then a cycle
Z in Σ is said to be canonically consistent (C-consistent) if it contains an even
number of negative vertices and the given signed graph Σ is said to be C-consistent
if every cycle in it is C-consistent. Due to enormous number of applications in
various fields, signed graphs are leading to vast variety of results and questions
and number of papers with their applications have been published in the reputed
international journals, for detail bibliography of signed graphs reader is referred to
up-to-date creative survey article of Zaslavsky [12].

Throughout this article, all graphs are assumed to be simple, i.e., undirected
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graphs in which any two vertices are joined by at most one edge and without loops.
For terminology and notations from group theory and graph theory not defined in
this paper, we refer the reader to [7] and [4] respectively.

1.1. Preliminary Analysis
In this subsection, we briefly recall the definitions which are needed in the

sequel.
Let Γ be an abelian group. The group of integers modulo n, denoted by Zn

in which the sets Z(Zn) and U(Zn) are defined as; Z(Zn) = {x : gcd(x, n) ̸= 1}
and U(Zn) = {y : gcd(y, n) = 1}. Also, U(Zm × Zn) is defined as; U(Zm × Zn) =
{(x, y) : gcd(x,m) = 1 & gcd(y, n) = 1}.
Definition 1.2. [2] A nonempty subset S of Γ is called Cayley set or symmetric
Cayley set if e /∈ S and for every a ∈ S, a−1 ∈ S. If Cayley set generates group Γ,
then S is called generating set or symmetric generating set.

Consequently, for a given group Γ of order n,

1 ≤ |S| ≤ n− 1. (1.1)

However, if S generates Γ, then

2 ≤ |S| ≤ n− 1. (1.2)

The following example illustrate the above concepts:

Example 1.3. Let Γ ∼= Z4. Then possible Cayley sets are S1 = {2}, S2 = {1, 3},
S3 = {1, 2, 3} and out of them S2 and S3 are both generating sets.

The following concept of Cayley signed graph was initiated in [10].

Definition 1.4. Let S be a Cayley set of a finite group Γ. The Cayley signed
graph, denoted by CayΣ(Γ, S) := (Cay(Γ, S), σ) is a signed graph whose underlying
graph is Cay(Γ, S) with vertex set Γ and generating set S, and for an edge (x, y) ∈
E(Cay(Γ, S)), the signature σ is defined as

σ(x, y) =

{
+, if x ∈ S or y ∈ S;
−, otherwise.

Lemma 1.5. [10] Let Γ be a finite cyclic group and p be a prime. Then CayΣ(Γ, S)
is balanced if any one of the following condition holds:

(i) S ⊆ U(Γ), when |Γ| is an even;

(ii) S = S ′ ∪ {p}, when |Γ| = 2p, where S ′ ⊆ U(Γ);
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(iii) S = { |Γ|
4
, 3|Γ|

4
}, when |Γ| is multiple of 4;

(iv) S = U(Γ), when |Γ| = pk, k ≥ 1;

(v) S = {a : a ̸= a−1, ∀ a ∈ Γ}, when |Γ| is an even.

2. Negation of Cayley Signed Graphs

The negation of Cayley signed graph, denoted by, η(CayΣ(Γ, S)) is a signed
graph obtained from Cayley signed graph CayΣ(Γ, S) by negating the sign of every
edge of CayΣ(Γ, S). To illustrate the notion we have the following example.

Example 2.1. Let Γ ∼= Z3 be a finite cyclic group. Then there is only one Cayley
set precisely S1 = {1, 2}, which is also a generating set. The Cayley signed graph
CayΣ(Z3, S1) and its negation η(CayΣ(Z3, S1)) with respect to generating set S1

are shown in Figure 1(a) and Figure 1(b), respectively.

0

1 2

(a)

0

1 2

(b)

Figure 1: The Cayley signed graph and its negation

In this Paper, we study the negation of Cayley signed graphs and determine
the Cayley sets and generating sets for which negation of Cayley signed graphs is
balanced or C-consistent.

Now, we will look at some examples of balanced and C-consistent negation of
Cayley signed graphs.

Example 2.2. Let Γ ∼= Z5 be a finite cyclic group. Then there are three Cayley
sets which are also generating set, namely, S1 = {1, 4}, S2 = {2, 3} and S3 =
{1, 2, 3, 4}. The negation Cayley signed graphs η(CayΣ(Z5, S1)), η(CayΣ(Z5, S2))
and η(CayΣ(Z5, S3)) are shown in Figure 2(a), Figure 2(b), and Figure 2(c), re-
spectively.
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Figure 2: The negation of Cayley signed graph

Here, one can observe that the negation of Cayley signed graph with respect
to generating sets S1 and S2 are balanced because both η(CayΣ(Z5, S1)) and
η(CayΣ(Z5, S2)) are cycle consisting of an even number of negative edges. How-
ever, η(CayΣ(Z5, S3)) is an all-negative signed graph and there exist an all negative
triangle which indicates that η(CayΣ(Z5, S3)) is not balanced.

Example 2.3. Let Γ ∼= Z4 be a finite cyclic group. Then, there are three Cayley
sets namely, S1 = {2}, S2 = {1, 3} and S3 = {1, 2, 3}. The negation of Cayley
signed graphs η(CayΣ(Z4, S1)), η(CayΣ(Z4, S2)) and η(CayΣ(Z4, S3)) are shown in
Figure 3(a), Figure 3(b) and Figure 3(c), respectively.
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Figure 3: The canonically marked negation of Cayley signed graph

Here, one can observe that η(CayΣ(Z4, S1)) is C-consistent as there is no cycle
in η(CayΣ(Z4, S1)). In η(CayΣ(Z4, S2)) all vertices receive positive sign under
canonical marking. Hence, η(CayΣ(Z4, S2)) is C-consistent. In η(CayΣ(Z4, S3)) all
vertices receive negative sign under canonical marking. So, by taking any three
vertices in η(CayΣ(Z4, S3)) we get a cycle having an odd number of negatively
marked vertices. Hence, η(CayΣ(Z4, S3)) is not C-consistent.
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3. Balanced η(CayΣ(Γ, S))
In this section, we shall find some sufficient conditions on Cayley set for which

η(CayΣ(Γ, S)) is balanced.

Theorem 3.1. Let Γ be a finite abelian group of order n and S be a Cayley set
with |S| = 1. Then η(CayΣ(Γ, S)) is balanced.
Proof. Let Γ be a finite abelian group of order n and |S| = 1. Then Cay(Γ, S) is
isomorphic to n

2
-copies of K2. Clearly, due to absence of cycles, η(CayΣ(Γ, S)) is

balanced trivially.

Lemma 3.2. Let Γ be a finite abelian group of order n and S be a generating set
with |S| = n− 1. Then η(CayΣ(Γ, S)) is not balanced.
Proof. Let Γ be a finite abelian group and S be a generating set with |S| = n− 1.
Then all non-zero elements of Γ belongs to S. This implies that there exist an
all negative triangle in η(CayΣ(Γ, S)) among any three elements of Γ. Therefore,
η(CayΣ(Γ, S)) is not balanced.

Theorem 3.3. Let Γ be a finite abelian group of order n and S be a generating
set with |S| = n− 2. Then η(CayΣ(Γ, S)) is balanced if and only if n = 4.
Proof. Necessity: Let Γ be a finite abelian group of order n and S be a generating
set with |S| = n − 2. Let us assume η(CayΣ(Γ, S)) is balanced and we have to
prove n = 4. Let us assume n ̸= 4. Then n > 4. As |S| = n− 2 and n > 4, then in
η(CayΣ(Γ, S)) there exist a negative triangle among 0, n−1 and n−2 which shows
that η(CayΣ(Γ, S)) is not balanced, a contradiction to the assumption. Thus by
contrapositive, the value of n must be 4 only.
Sufficiency: If n = 4, then |S| = 2. In this case, η(CayΣ(Γ, S)) is isomorphic to an
all negative 4-cycle and which shows that η(CayΣ(Γ, S)) is balanced.

Theorem 3.4. Let Γ be a finite cyclic group, S be a Cayley set and p be a prime.
Then η(CayΣ(Γ, S)) is balanced if any one of the following condition holds:

(i) S ⊆ U(Γ), when |Γ| is an even;

(ii) S = S ′ ∪ {p}, when |Γ| = 2p, |Γ| ≠ 4, and S ′ ⊆ U(Γ);

(iii) S = { |Γ|
4
, 3|Γ|

4
}, when |Γ| is multiple of 4;

(iv) S = {a, a−1}; a ∈ U(Γ), when |Γ| is odd and |Γ| > 3.

Proof. (i) Let Γ be a finite cyclic group of even order and S be a Cayley set.
If S ⊆ U(Γ), then every negative edge has one end vertex with odd label and
all edges incident to that odd labeled vertex are all negative or all positive. So,
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every cycle in CayΣ(Γ, S) has an even number of negative edges. Since, |Γ| is an
even and S ⊆ U(Γ) this implies that length of every cycle in CayΣ(Γ, S) is even.
Therefore, each cycle in η(CayΣ(Γ, S)) contains an even number of negative edges.
Thus η(CayΣ(Γ, S)) is balanced.
(ii) If S = S ′∪{p}, where |Γ| = 2p, |Γ| ≠ 4, and S ′ ⊆ U(Γ), then either CayΣ(Γ, S)
is an all positive signed graph or every cycle in CayΣ(Γ, S) consists of even number
of negative edges due to Lemma 1.5. Note that each cycle in CayΣ(Γ, S) is of even
length and hence in η(CayΣ(Γ, S)) as well. This indicates the presence of even
number of negative edges in each cycle in η(CayΣ(Γ, S)). Thus η(CayΣ(Γ, S)) is
balanced.
(iii) If S = { |Γ|

4
, 3|Γ|

4
}, where |Γ| is multiple of 4, then Cay(Γ, S) is isomorphic

to C4 ∪ C4 ∪ · · · ∪ C4︸ ︷︷ ︸
k−times

and its respective signed graph CayΣ(Γ, S) is isomorphic to

C4 ∪ C4 ∪ · · · ∪ C4︸ ︷︷ ︸
k−times

in which exactly one C4 is an all positive and remaining C4 are

all negative. This implies that η(CayΣ(Γ, S)) consists of one C4 which is an all
negative and remaining C4 are all positive. Therefore, η(CayΣ(Γ, S)) is balanced.
(iv) If S = {a, a−1}; a ∈ U(Γ), where |Γ| is odd and |Γ| > 3, then CayΣ(Γ, S) is
isomorphic to cycle of odd length consisting of odd number of negative edges. This
implies that η(CayΣ(Γ, S)) is isomorphic to a cycle of odd length consisting of even
number of negative edges. Thus η(CayΣ(Γ, S)) is balanced.

Theorem 3.5. Let Γ ∼= Zt
2, t ≥ 1, and S = Z0(Γ). Then η(CayΣ(Γ, S)) is bal-

anced if and only if t = 2.
Proof. Let Γ ∼= Zt

2, t ≥ 1, and S = Z0(Γ). This gives |S| = n−2. Now in the view
of Theorem 3.3, it is clear that Γ must be an abelian group of order 4. Therefore,
Γ must be isomorphic to Z2 × Z2. Hence, the result.

Theorem 3.6. Let Γ ∼= Zt
2, t ≥ 1, and S = U(Γ). Then η(CayΣ(Γ, S)) is balanced.

Proof. Let Γ ∼= Zt
2, t ≥ 1, and S = U(Γ). Then |S| = 1. Therefore, the result

holds due to Theorem 3.1.

Theorem 3.7. Let Γ ∼= Zpk , (k ≥ 1), where p is prime, and S = U(Γ) be a
generating set. Then η(CayΣ(Γ, S)) is balanced if and only if p = 2.
Proof. Necessity: Let Γ ∼= Zpk , (k ≥ 1), and S = U(Γ) be a generating set. Let
η(CayΣ(Γ, S)) is balanced and p ̸= 2. This implies that |S| ≥ 2 and CayΣ(Γ, S) is
all-positive due to Lemma 1.5(iv). Thus, if |S| ≥ 2, η(CayΣ(Γ, S)) is all-negative
signed graph. Then there always exist an all negative triangle in η(CayΣ(Γ, S))
among 0, (pk − 1) and (pk − 2) and this indicates that η(CayΣ(Γ, S)) is not bal-
anced, a contradiction, hence, by contrapositive result holds.
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Sufficiency: Let p = 2. Then η(CayΣ(Γ, S)) is balanced due to Theorem 3.4(i).

Theorem 3.8. Let Γ ∼= Zpk , (k > 1), where p is prime, and S = Z0(Γ) be a Cay-
ley set. Then η(CayΣ(Γ, S)) is balanced if and only if p = 2 with k = 2. Proof.
Necessity: Let Γ ∼= Zpk , (k > 1), and S = Z0(Γ) be a Cayley set. Let us assume
that η(CayΣ(Γ, S)) is balanced and given condition is false. Then there are two
cases arise :
Case 1: If p = 2 with k > 2, then there exists an all-negative triangle in η(CayΣ(Γ, S))
among 0, 2, and 4.
Case 2: If p > 2 with k > 1 then pk > 4. Since in η(CayΣ(Γ, S)) the negative
edges lie between the vertices whose labels are multiples of p and 0, so there exist
an all-negative triangle in η(CayΣ(Γ, S)) among 0 and two elements of S because
pk > 4. Thus η(CayΣ(Γ, S)) is not balanced in both cases, a contradiction. Hence,
by contrapositive result holds.
Sufficiency: Let p = 2, k = 2. Then |S| = 1 implies that η(CayΣ(Γ, S)) is balanced
due to Theorem 3.1.

4. C-Consistent η(CayΣ(Γ, S))
This section is devoted to find sufficient conditions on S, for which η(CayΣ(Γ, S))

is C-consistent.
Theorem 4.1. Let Γ be a finite abelian group of order n and S be a generating set.
Then η(CayΣ(Γ, S)) is C-consistent if any one of the following condition holds:

(i) |S| = 1;

(ii) |S| = 2, when n > 2.

Proof. (i) Let Γ be a finite abelian group and S be a Cayley set with |S| = 1.
Then Cay(Γ, S)) is 1-regular graph and clearly there is no cycle in η(CayΣ(Γ, S)).
Therefore η(CayΣ(Γ, S)) is C-consistent.
(ii) Let Γ be a finite abelian group of order n > 2 and S be a Cayley set with
|S| = 2. This implies that Cay(Γ, S) is either a cycle graph or copies of cycle
graph. In this case, CayΣ(Γ, S) consists of all positive edges or all negative edges
or a negative section. This implies that every cycle in η(CayΣ(Γ, S)) have an even
number of negatively marked vertices under C-marking. Hence, η(CayΣ(Γ, S)) is
C-consistent.
Theorem 4.2. Let Γ be a finite abelian group of order n and S be a generating set.
Then η(CayΣ(Γ, S)) is C-consistent if any one of the following condition holds:

(i) |S| = n− 1, when n is odd;
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(ii) |S| = n− 2, when n is even.

Proof. (i) Let Γ be a finite abelian group of odd order. Then n − 1 is even.
Cay(Γ, S) is a regular graph of even degree and CayΣ(Γ, S) is an all-positive signed
graph. This implies that η(CayΣ(Γ, S)) is an all-negative signed graph in which
each vertex is of even degree. Therefore, all vertices in η(CayΣ(Γ, S)) receive
positive sign under C-marking . Hence, η(CayΣ(Γ, S)) is C-consistent.
(ii) If |S| = n − 2, then η(CayΣ(Γ, S)) is an all-negative signed graph. Clearly,
n − 2 is even as n is even. Thus, η(CayΣ(Γ, S)) is all-negative signed graph of
even negative degree. Therefore, each vertex in η(CayΣ(Γ, S)) receives positive
sign under C-marking. Hence, η(CayΣ(Γ, S)) is C-consistent.
Theorem 4.3. Let Γ be a finite cyclic group of even order and S be a Cayley set.
Then η(CayΣ(Γ, S)) is C-consistent if any one of the following condition holds:

(i) S contains all elements of Γ except 0 and |Γ|/2;

(ii) S = { |Γ|
4
, 3|Γ|

4
} ∪ S1, where S1 ⊆ U(Γ) and |Γ| is multiple of 4.

Proof. (i) If |Γ| is even and S contains all elements of Γ except 0 and |Γ|/2, then
CayΣ(Γ, S) is all-positive signed graph. This implies that η(CayΣ(Γ, S)) is all-
negative regular signed graph of even degree. Thus, all vertices in η(CayΣ(Γ, S))
receive positive sign. Hence, η(CayΣ(Γ, S)) is C-consistent.
(ii) If S = { |Γ|

4
, 3|Γ|

4
}∪S1, where S1 ⊆ U(Γ) and |Γ| is multiple of 4. This implies that

|S| is even and non-zero elements outside S are odd in number because one element
is self inverse. Also, the difference of any two non-zero elements outside S always
belongs to S. This implies that all vertices receive positive sign in η(CayΣ(Γ, S))
under C-marking. Hence, η(CayΣ(Γ, S)) is C-consistent.
Theorem 4.4. Let Γ ∼= Zt

2, t ≥ 1, and either S = Z0(Γ) or S = U(Γ). Then
η(CayΣ(Γ, S)) is C-consistent.
Proof. Firstly, let Γ ∼= Zt

2, t ≥ 1, and S = Z0(Γ). This implies that |S| = n − 2
and |S| is even. Hence, η(CayΣ(Γ, S)) is C-consistent due to Theorem 4.2(ii).
Secondly, let Γ ∼= Zt

2, t ≥ 1, and S = U(Γ). This implies that |S| = 1. Then the
result holds due to Theorem 4.1(i).

Theorem 4.5. Let Γ ∼= Zpk , (k ≥ 1), where p is prime, and S = U(Γ) be a
generating set. Then η(CayΣ(Γ, S)) is C-consistent.
Proof. Let Γ ∼= Zpk , (k ≥ 1), and S = U(Γ) be a generating set. First if p = 2 with
k = 1, then |S| = 1. In this way, η(CayΣ(Γ, S)) is C-consistent due to Theorem
4.1(i).
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Next if either (p = 2, k > 1) or (p > 2, k ≥ 1). Then CayΣ(Γ, S) is all-positive by
Lemma 1.5(iv). This implies that η(CayΣ(Γ, S)) is an all-negative signed graph.
Also, |S| = pk − pk−1 is even as |Γ| > 2. Note that η(CayΣ(Γ, S)) is all-negative
regular signed graph of even degree. Therefore, all vertices in η(CayΣ(Γ, S)) receive
positive sign under C-marking. Hence, η(CayΣ(Γ, S)) is C-consistent.
Theorem 4.6. Let Γ ∼= Zpk , (k > 1), where p is prime, and S = Z0(Γ) be a Cayley
set. Then η(CayΣ(Γ, S)) is C-consistent if and only if either (p = 2 and k = 2) or
(p > 2 and k > 1).
Proof. Necessity: Let Γ ∼= Zpk , (k > 1), and S = Z0(Γ). First let us suppose
that η(CayΣ(Γ, S)) is C-consistent and neither (p = 2 and k = 2) nor (p > 2 and
k > 1). Then |S| is odd and η(CayΣ(Γ, S)) is odd-regular graph. Note that in
η(CayΣ(Γ, S)) an edge is positive if and only if none of end vertices belong to S.
Since the negative edges lie between multiple of p and 0, and |S| is odd, so the
number of negative edges incident at u, u ∈ S are odd. Thus every vertex belonging
to S receive negative sign under C-marking. In this way, there exist a triangle with
three negative vertices in which one is 0 and remaining two elements belongs to S.
Thus, η(CayΣ(Γ, S)) is not C-consistent, a contradiction, hence, by contrapositive
result hold.
Sufficiency: Case 1: If p = 2, k = 2 and S = Z0(Γ). Then |S| = 1 implies that
η(CayΣ(Γ, S)) is C-consistent due to Theorem 4.1(i).
Case 2: If p > 2 and k > 1, then |S| is even and η(CayΣ(Γ, S)) is even-regular
graph. Note that in η(CayΣ(Γ, S)) an edge is positive if and only if none of end
vertices belong to S. Since, the negative edges lie between multiple of p and 0, and
|S| is even. This implies that the number of negative edges incident at u, u ∈ S
are even. So, each vertex belonging to S receives positive sign under C-marking.
Thus, all vertices in η(CayΣ(Γ, S)) receive positive sign under C-marking. Hence,
η(CayΣ(Γ, S)) is C-consistent.
5. Conclusion

In this paper, we have characterized the Cayley sets and generating sets for
which negation of Cayley signed graph is balanced, and also, for which negation
of Cayley signed graph is C-consistent. One of the highlights of this paper is that
for cyclic group Γ ∼= Z2k (k ≥ 1) and S = U(Γ), η(CayΣ(Γ, S)) is balanced as
well as C-consistent. For abelian group Γ ∼= Zt

2, (t ≥ 1), and either S = Z0(Γ) or
S = U(Γ), then η(CayΣ(Γ, S)) is always C-consistent but balanced conditionally.
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